Prove that,
sinθ/1+cos θ+sinθ/1−cos θ = 2/sinθ
plz help
#Don't dare to spam
Answers
Answered by
4
Answer:
sinO/1 + cosO + sinO/1 - cosO = 2 / sinO
+ cosO - cosO ( cancel ❌ )
so , sinO/1 + sinO/1 ( LCM ) = 2/ sinO
:- 2 / sinO = 2 sinO
Hence , proved !!!
Answered by
1
sinx/1+cosx +sinx/1-cosx
sinx(1/1+cosx +1/1-cosx)
sinx( 1-cosx+1+cosx/1-cossquare x)
sinx(2/sinsquarex)
2/sinx hence prove
SORRY FOR NOT TAKING THE THETA
Similar questions