Prove that sin θ ( 1 – tan θ ) − cos θ ( 1 − cot θ ) = cosec θ − sec θ
Answers
Answered by
2
Step-by-step explanation:
L.H.S. = sin θ (1 - tan θ) - cos θ (1- cot θ)
= sin θ (1 - sin θ/cos θ) - cos θ (1- cos θ/sinθ)
= sin θ{(cosθ -sinθ )/cos θ} - cos θ{(sinθ-cosθ )/sinθ}
=(cos θ - sin θ) (sinθ/cos θ - cos θ/sinθ)
= (cos θ - sin θ)/cos θ sin θ
= cosec θ - sec θ
= R.H.S.
Answered by
4
❥ the above is the answer of your question
❥ hope that's helps you
Similar questions