prove that, sinθ(1+tanθ)+cosθ(1+cotθ)=secθ+cosecθ
Answers
Answered by
3
Step-by-step explanation:
SinΘ(1+tanΘ)+cosΘ(1+cotΘ)=secΘ+cosecΘ
By LHS:
=SinΘ(1+tanΘ)+cosΘ(1+cotΘ)
=SinΘ(1+sinΘ/cosΘ)+cosΘ(1+cosΘ/sinΘ)
=SinΘ.cosΘ+sin²Θ/cosΘ+cosΘ.sinΘ+cos²Θ/sinΘ
=sin²Θ.cosΘ+sin³Θ+cos²Θ.sinΘ+cos³Θ/sinΘ.cosΘ
=cos²Θ.sinΘ+sin³Θ+sin²Θ.cosΘ+cos³Θ/sinΘ.cosΘ
=SinΘ(cos²Θ+sin²Θ)+cosΘ(sin²Θ.cos²Θ)/sinΘ.cosΘ
=SinΘ(1)+cosΘ(1)/sinΘ.cosΘ
=SinΘ/sinΘ.cosΘ+cosΘ/sinΘ.cosΘ
=1/cosΘ+1/sinΘ
=secΘ+cosecΘ
.•.RHS=LHS
hope it helps!!!
Answered by
0
hope that helps you :-)
Attachments:
Similar questions
Geography,
4 months ago
Math,
4 months ago
English,
4 months ago
Math,
9 months ago
Social Sciences,
9 months ago
Economy,
1 year ago
Business Studies,
1 year ago