Math, asked by TheRealSardar910, 1 year ago

Prove that Sin 10.sin 50.sin 60.sin 70 =√3/16

Answers

Answered by Pitymys
0

Use the identities,

 \sin (90^o-\theta)=\cos \theta .

 \sin 2\theta=2\sin \theta \cos \theta

Using the above identity,

[tex] \sin 10^o=\cos 80^o\\

\sin 50^o=\cos 40^o\\

\sin 70^o=\cos 20^o [/tex]

Now,

[tex] LHS=\sin 10^o \sin 50^o \sin 70^o \sin 60^o=\cos 80^o\cos 40^o\cos 20^o \sin 60^o\\

LHS=\sin 10^o \sin 50^o \sin 70^o \sin 60^o=\frac{1}{2\sin 20^o}\cos 80^o\cos 40^o(2\sin 20^o\cos 20^o) \sin 60^o \\

LHS=\sin 10^o \sin 50^o \sin 70^o \sin 60^o=\frac{1}{2\sin 20^o}\cos 80^o\cos 40^o \sin 40^o \sin 60^o \\

[/tex]

[tex] LHS=\sin 10^o \sin 50^o \sin 70^o \sin 60^o=\frac{1}{4\sin 20^o}\cos 80^o(2\cos 40^o \sin 40^o) \sin 60^o \\

LHS=\sin 10^o \sin 50^o \sin 70^o \sin 60^o=\frac{1}{4\sin 20^o}\cos 80^o \sin 80^o\sin 60^o \\

LHS=\sin 10^o \sin 50^o \sin 70^o \sin 60^o=\frac{1}{8\sin 20^o}2\cos 80^o \sin 80^o\sin 60^o \\

LHS=\sin 10^o \sin 50^o \sin 70^o \sin 60^o=\frac{1}{8\sin 20^o}\sin 160^o\sin 60^o \\ [/tex]

[tex]LHS= \sin 10^o \sin 50^o \sin 70^o \sin 60^o=\frac{1}{8\sin 20^o}\sin 20^o\sin 60^o \\

LHS=\sin 10^o \sin 50^o \sin 70^o \sin 60^o=\frac{1}{8}\sin 60^o \\

LHS=\sin 10^o \sin 50^o \sin 70^o \sin 60^o=\frac{1}{8}(\frac{\sqrt{3}}{2})\\

LHS=\sin 10^o \sin 50^o \sin 70^o \sin 60^o=\frac{\sqrt{3}}{16} =RHS[/tex]

The proof is complete.

Similar questions