Math, asked by anuragshukl235, 9 months ago

Prove that:
. sin 120 - sin 40 = 2 cos 80.sin 40.​

Answers

Answered by yashikakakkar28
1

Answer:

Step-by-step explanation:

Attachments:
Answered by Anonymous
36

Question :

To prove

sin120°-sin40° = 2cos80°sin40°

Trignometric Formulas:

1)  \sin(c)  +  \sin(d)  = 2 \sin( \frac{c + d}{2} )  \cos( \frac{c  - d}{2} )

2) \sin(c)  -  \sin(d)  = 2 \sin( \frac{c - d}{2} )  \cos( \frac{c + d}{2} )

3) \cos(c )  +  \cos(d)  = 2 \cos( \frac{c + d}{2} )  \cos( \frac{c - d}{2} )

4) \cos(c)  -  \cos(d)  =  - 2 \sin( \frac{c + d}{2} )  \sin( \frac{c - d}{2} )

Solution :

We have to prove

sin120°-sin40° = 2cos80°sin40°

______________________

Proof :

LHS =sin120°-sin40°

Apply sin c- sin d formula

 = 2 \sin( \frac{120 - 40}{2} )  \cos( \frac{120 + 40}{?} )

 = 2 \sin(40) \degree \cos(80) \degree

RHS= 2cos80°sin40°

⇒LHS = RHS

\huge{\bold{ Hence\: Proved}}

_____________________

More Trigonometry Formulas:

  1. sin²A + cos²A = 1
  2. sec²A - tan²A = 1
  3. cosec²A - cot²A = 1
  4. sin2A = 2 sinA cosA
  5. cos2A = cos²A - sin²A
  6. tan2A = 2 tanA / (1 - tan²A)
Similar questions