Prove that sin 120° cos 330° + cos 240° sin 330º = 1
Answers
Answered by
2
Answer:
Sin(180–60)*cos(90+60) - cos(270–30)*sin(360–30)
= Sin60* (-Sin60)- (-sin30)*(-sin30)=-3/4–1/4 = -4/4 = -1
You made a mistake at step 2
Cos(90+60)= - Sin 60 not Sin 60.
Step-by-step explanation:
Answered by
0
Step-by-step explanation:
Taking LHS:
sin 120° × cos 330° + cos 240° × sin 330°
sin (90+30)° × cos (360-30)° + cos (270-30)° × sin (360-30)°
cos 30° × cos 30° + (- sin 30°)(- sin 30°)
cos² 30° + sin² 30°
1
Therefore LHS=RHS
Hence proved.
Similar questions