Prove that sin 15° is equal to√6−√2/4
Answers
Step-by-step explanation:
We will use the identity sin(x−y)=sinxcosy−sinycosx. We have that
sin15∘=sin(45−30)∘=sin45∘cos30∘−cos45∘sin30∘=12⎯⎯√3⎯⎯√2−12⎯⎯√12=2⎯⎯√3⎯⎯√2×2−2⎯⎯√2×2=6⎯⎯√−2⎯⎯√4.
We now have
cos215∘=1−sin215∘=1−6+2−26⎯⎯√2⎯⎯√16=8+212⎯⎯⎯⎯√16=6+2+22⎯⎯√6⎯⎯√16=(6⎯⎯√+2⎯⎯√)242,
and so, since cosθ is positive between 0∘ and 90∘,
cos15∘=6⎯⎯√+2⎯⎯√4.
Finally, we have
tan15∘=sin15∘cos15∘=6⎯⎯√−2⎯⎯√6⎯⎯√+2⎯⎯√=(6⎯⎯√−2⎯⎯√)2(6⎯⎯√+2⎯⎯√)(6⎯⎯√−2⎯⎯√)=6+2−22⎯⎯√6⎯⎯√6−2=8−212⎯⎯⎯⎯√4=2−3⎯⎯√.
Answer:
√6 - √2
4
Step-by-step explanation:
sin 15 = sin(45-30)
= sin45 cos30 - cos45 sin30
= (1/√2)(√3/2) - (1/√2)(1/2)
= 1/√2[(√3/2)-(1/2)]
= √3-1/ 2√2
= [(√3-1)/2√2](√2/√2)
= √6-√2/4