Math, asked by aryangupta281104, 2 months ago

Prove that sin 15° is equal to√6−√2/4​

Answers

Answered by costuyalyramae70
0

Step-by-step explanation:

We will use the identity sin(x−y)=sinxcosy−sinycosx. We have that

sin15∘=sin(45−30)∘=sin45∘cos30∘−cos45∘sin30∘=12⎯⎯√3⎯⎯√2−12⎯⎯√12=2⎯⎯√3⎯⎯√2×2−2⎯⎯√2×2=6⎯⎯√−2⎯⎯√4.

We now have

cos215∘=1−sin215∘=1−6+2−26⎯⎯√2⎯⎯√16=8+212⎯⎯⎯⎯√16=6+2+22⎯⎯√6⎯⎯√16=(6⎯⎯√+2⎯⎯√)242,

and so, since cosθ is positive between 0∘ and 90∘,

cos15∘=6⎯⎯√+2⎯⎯√4.

Finally, we have

tan15∘=sin15∘cos15∘=6⎯⎯√−2⎯⎯√6⎯⎯√+2⎯⎯√=(6⎯⎯√−2⎯⎯√)2(6⎯⎯√+2⎯⎯√)(6⎯⎯√−2⎯⎯√)=6+2−22⎯⎯√6⎯⎯√6−2=8−212⎯⎯⎯⎯√4=2−3⎯⎯√.

Answered by sanjeevipfiles
3

Answer:

√6 - √2

4

Step-by-step explanation:

sin 15 = sin(45-30)

sin(a - b) = sina  \:  cosb - cosa  \: sinb

= sin45 cos30 - cos45 sin30

= (1/2)(3/2) - (1/2)(1/2)

= 1/2[(3/2)-(1/2)]

= 3-1/ 22

= [(3-1)/22](2/2)

= 6-2/4

Similar questions