prove that :
sin 18 = (root 5)-1 / 4
Answers
If x = 18°, and 3·18° = 54°and 2·18° = 36° then
sin(3x) = cos(2x). ← That's the magic step, leading to...
sin(3x) = sin(2x + x) = sin(2x)cos(x) + sinx cos(2x)
thus,
sin(3x) = cos(2x)
sin(2x)cos(x) + sinx cos(2x) = cos(2x)
sin(2x)cos(x) = cos(2x) - sinx cos(2x)
sin(2x)cos(x) = cos(2x) (1-sinx)
2sinxcos²x = (1-2sin²x)(1-sinx)
2sinx(1-sin²x) = (1-2sin²x)(1-sinx)
2sinx(1-sinx)(1+sinx) = (1-2sin²x)(1-sinx)
Since we know sinx≠1, we can divide by 1-sinx
2sinx(1+sinx) = (1-2sin²x)
2sinx + 2sin²x = 1 - 2sin²x
4sin²x + 2sinx - 1 = 0
sinx = (-1±√5)/4
so sin18° = (-1+√5)/4 or (-1-√5)/4
but we know sin 18° is positive, leaving us with sin18° =(-1+√5)/4
Answer:
Explanation:sin 54° = cos 36° since they're complementary angles
If x = 18°, and 3·18° = 54°and 2·18° = 36° then
sin(3x) = cos(2x). ← That's the magic step, leading to...
sin(3x) = sin(2x + x) = sin(2x)cos(x) + sinx cos(2x)
thus,
sin(3x) = cos(2x)
sin(2x)cos(x) + sinx cos(2x) = cos(2x)
sin(2x)cos(x) = cos(2x) - sinx cos(2x)
sin(2x)cos(x) = cos(2x) (1-sinx)
2sinxcos²x = (1-2sin²x)(1-sinx)
2sinx(1-sin²x) = (1-2sin²x)(1-sinx)
2sinx(1-sinx)(1+sinx) = (1-2sin²x)(1-sinx)
Since we know sinx≠1, we can divide by 1-sinx
2sinx(1+sinx) = (1-2sin²x)
2sinx + 2sin²x = 1 - 2sin²x
4sin²x + 2sinx - 1 = 0
sinx = (-1±√5)/4
so sin18° = (-1+√5)/4 or (-1-√5)/4
but we know sin 18° is positive, leaving us with sin18° =(-1+√5)/4
Read more on Brainly.in - https://brainly.in/question/7273310#readmore