Math, asked by sheikanzil, 1 year ago

prove that sin (180+A)*cos(90-A)*tan(270-A)/sec(540-A)*cos(360+A)*cosec(270+A)=-sin A cos^2 A

Answers

Answered by umamahesh11218
7

sin^3(180-A) tan(360-A) sec^2(180-A)/cos^2(90+A) cos^2A sin(180-A)=tan^3A

Answered by brokendreams
1

\dfrac{sin (180+A)cos(90-A)tan(270-A)}{sec(540-A)cos(360+A)cosec(270+A)}=-sin A cos^2 A is proved.

Step-by-step explanation:

To Prove: \dfrac{sin (180+A)cos(90-A)tan(270-A)}{sec(540-A)cos(360+A)cosec(270+A)}=-sin A cos^2 A

Solution:

  • Proof of the given trigonometric equation

Considering LHS such that we have

\Rightarrow \dfrac{sin (180+A)cos(90-A)tan(270-A)}{sec(540-A)cos(360+A)cosec(270+A)}

\Rightarrow \dfrac{-sin (A)cos(90-A)tan(270-A)}{sec(540-A)cos(360+A)cosec(270+A)} \ \ \because sin(180+A) = -sin(A)

\Rightarrow \dfrac{-sin (A)sin(A)tan(270-A)}{sec(540-A)cos(360+A)cosec(270+A)} \ \ \because cos(90-A) = sin(A)

\Rightarrow \dfrac{-sin (A)sin(A)cot(A)}{sec(540-A)cos(360+A)cosec(270+A)} \ \ \because tan(270-A) = cot(A)

Since sec(540-A) = sec(360 + 180-A) = sec (180-A) = -sec(A), we can write,

\Rightarrow \dfrac{-sin (A)sin(A)cot(A)}{-sec(A)cos(360+A)cosec(270+A)}

\Rightarrow \dfrac{sin (A)sin(A)cot(A)}{sec(A)cos(A)cosec(270+A)} \ \ \because cos(360+A) = cos(A)

\Rightarrow \dfrac{sin (A)sin(A)cot(A)}{sec(A)cos(A)( -sec(A))} \ \ \because cosec(270+A) = -sec(A)

\Rightarrow - \dfrac{sin (A) \times sin(A) \times \dfrac{cos(A)}{sin(A)} }{\dfrac{1}{cos(A)} \times cos(A) \times \dfrac{1}{cos(A)}}

Solving the above, you will get

\Rightarrow - sinAcos^2A = RHS

Hence, proved \dfrac{sin (180+A)cos(90-A)tan(270-A)}{sec(540-A)cos(360+A)cosec(270+A)}=-sin A cos^2 A

Similar questions