Math, asked by Anonymous, 1 year ago

Prove that :
sin(2×30°) = 2tan30°/1+tan^2 30°​

Answers

Answered by Anonymous
60

\mathfrak{\underline{\underline{Question:}}}

Prove that \: \: \sin(2 \times 30 \degree)  =  \dfrac{2 \tan30 \degree }{1 +  { \tan }^{2}30 \degree }

\mathfrak{\underline{\underline{Answer:}}}

LHS = sin(2 × 30°)

\qquad = sin 60°

 \qquad    =  \dfrac{  \sqrt{3} }{2}

\rm{RHS =\dfrac{2tan 30°}{1+tan^2 30°} } \\  \\  \qquad  \:   =  \dfrac{2( \frac{1}{ \sqrt{3} } )}{1 +  {( \frac{1}{ \sqrt{3} }) }^{2} } \\   \qquad \:  =  \dfrac{ \frac{2}{ \sqrt{3} } }{1 +  \frac{1}{3} }  \\  \qquad \:  =  \dfrac{ {2} }{  \sqrt{ 3} }  \times  \frac{3}{4}  \\  \qquad \:  =  \dfrac{3}{2 \sqrt{3} }  \\ \qquad \:  =  \frac{ \sqrt{3} \times  \cancel{\sqrt{3}}}{2 \times   \cancel{ \sqrt{3} }}  =  \frac{ \sqrt{3} }{2}

∴ LHS = RHS

\sin(2 \times 30 \degree)  =  \dfrac{2 \tan30 \degree }{1 +  { \tan }^{2}30 \degree }

Answered by Kalp253
1

Here is your answer. Hope it helps

Attachments:
Similar questions