Prove that: sin^ 2 (45^ + theta)-sin^ 2 (45^ - theta)=2 sin theta.cos theta
Answers
Answered by
10
Answer:
Step-by-step explanation:
To Prove :-
Formula Required :-
1) sin²θ = (sinθ)²
2) sin(A + B) = sinAcosB + cosAsinB
3) sin(A - B) = sinAcosB - cosAsinB
4) sin45° = 1/√2
5) sin²θ + cos²θ = 1
Solution :-
Taking L.H.S :-
[ ∴ sin²θ = (sinθ)² ]
[ ∴ sin(A + B) = sinAcosB + cosAsinB
sin(A - B) = sinAcosB - cosAsinB ]
[ ∴ sin45° = 1/√2 ]
[ ∴ sin²θ + cos²θ = cos²θ + sin²θ = 1 ]
= 2sinθcosθ
= R.H.S
Hence proved that 'sin²(45° + θ) - sin²(45° - θ) = 2sinθcosθ '
Similar questions