Math, asked by Saqibsouran6316, 1 year ago

Prove that sin^2 5 + sin^2 10 + sin^2 15 +.. + sin^2 90 = 9 1/2

Answers

Answered by MaheswariS
1

\underline{\textbf{To prove:}}

\mathsf{sin^25^\circ+sin^210^\circ+sin^215^\circ+\;.\;.\;.\;.+sin^290^\circ=9\dfrac{1}{2}}

\underline{\textbf{Solution:}}

\mathsf{Let\;\;sin^25^\circ+sin^210^\circ+sin^215^\circ+\;.\;.\;.\;.+sin^285+sin^290^\circ=x}

\mathsf{sin^25^\circ+sin^210^\circ+sin^215^\circ+\;.\;.+sin^245^\circ+\;.\;.+sin^285^\circ+(1)^2=x}

\mathsf{sin^25^\circ+sin^210^\circ+sin^215^\circ+\;.\;.+sin^245^\circ+\;.\;.+sin^285^\circ=x-1}-----------(1)

\mathsf{Using,}

\boxed{\mathsf{sin\theta=cos(90^\circ-\theta)}}\;\;\mathsf{in\;(1)}

\mathsf{cos^285^\circ+cos^280^\circ+cos^275^\circ+\;.\;.+cos^245^\circ+\;.\;.+cos^25^\circ=x-1}---------(2)

\textsf{Adding (1) and (2)}

\mathsf{(sin^25^\circ+cos^25^\circ)+(sin^210^\circ+cos^210^\circ)+(sin^215^\circ+cos^215^\circ)+\;,\;,+}

\mathsf{(sin^245^\circ+cos^245^\circ)+}\;,\;,\;,+(sin^285^\circ+cos^285^\circ)=2x-2}

\mathsf{Using}\;\boxed{\mathsf{cos^2A+sin^2A=1}}

\mathsf{1+1+1+\;,\;,\;,\;,17\;terms=2x-2}

\mathsf{17=2x-2}

\mathsf{2x=19}

\mathsf{x=\dfrac{19}{2}}

\mathsf{x=9\dfrac{1}{2}}

\implies\boxed{\mathsf{sin^25^\circ+sin^210^\circ+sin^215^\circ+\;.\;.\;.\;.+sin^290^\circ=9\dfrac{1}{2}}}

Similar questions