prove that sin^2π/6+cos^2π/3-tan^2π/4=-1/2
Answers
Answered by
1
Answer:
To prove:
LHS,
Hence,Proved..
HOPE...!!!IT HELPSSS!!!!
Answered by
0
Answer:
please mark me as brainliest and follow me
Step-by-step explanation:
To prove:
{ \sin }^{2} \frac{\pi}{6} + { \cos}^{2} \frac{\pi}{3} - { \tan}^{2} \frac{\pi}{4} = \frac{ - 1}{2}sin26π+cos23π−tan24π=2−1
LHS,
{ \sin}^{2} \frac{\pi}{6} + { \cos}^{2} \frac{\pi}{3} - { \tan}^{2} \frac{\pi}{4}sin26π+cos23π−tan24π
{( \frac{1}{2} )}^{2} + {( \frac{1}{2} )}^{2} - {(1)}^{2}(21)2+(21)2−(1)2
\frac{1}{4} + \frac{1}{4} - 141+41−1
\frac{2}{4} - 1 = \frac{ - 2}{4}42−1=4−2
\frac{ - 1}{2} = rhs2−1=rhs
Hence,Proved..
Similar questions