Math, asked by atulsingh2881, 9 months ago

prove that sin^2π/6+cos^2π/3-tan^2π/4=-1/2​

Answers

Answered by priyagupta5
1

Answer:

To prove:

 { \sin }^{2}   \frac{\pi}{6}  +  { \cos}^{2} \frac{\pi}{3}  -  { \tan}^{2}   \frac{\pi}{4}  =  \frac{ - 1}{2}

LHS,

 { \sin}^{2}  \frac{\pi}{6}  +  { \cos}^{2}  \frac{\pi}{3}  -  { \tan}^{2}  \frac{\pi}{4}

 {( \frac{1}{2} )}^{2}  +  {( \frac{1}{2} )}^{2}  -  {(1)}^{2}

 \frac{1}{4}  +  \frac{1}{4} -  1

 \frac{2}{4}  - 1 =  \frac{ - 2}{4}

 \frac{ - 1}{2}  =  rhs

Hence,Proved..

HOPE...!!!IT HELPSSS!!!!

Answered by ishu0ishita
0

Answer:

please mark me as brainliest and follow me

Step-by-step explanation:

To prove:

{ \sin }^{2} \frac{\pi}{6} + { \cos}^{2} \frac{\pi}{3} - { \tan}^{2} \frac{\pi}{4} = \frac{ - 1}{2}sin26π+cos23π−tan24π=2−1

LHS,

{ \sin}^{2} \frac{\pi}{6} + { \cos}^{2} \frac{\pi}{3} - { \tan}^{2} \frac{\pi}{4}sin26π+cos23π−tan24π

{( \frac{1}{2} )}^{2} + {( \frac{1}{2} )}^{2} - {(1)}^{2}(21)2+(21)2−(1)2

\frac{1}{4} + \frac{1}{4} - 141+41−1

\frac{2}{4} - 1 = \frac{ - 2}{4}42−1=4−2

\frac{ - 1}{2} = rhs2−1=rhs

Hence,Proved..

Similar questions