Math, asked by bhiokhu76, 1 year ago

Prove that

Sin^2 π/6 + Cos^2 π/3 - tan^2 π/4 = - 1/2 ​

Answers

Answered by Swarnimkumar22
11

 \bf \: LHS =  {sin}^{2}  \frac{\pi}{6}  +  {cos}^{2}  \frac{\pi}{3}  -  {tan}^{2}  \frac{\pi}{4}

We know that the value of π = 180°

now,

  \bf \: {sin}^{2}  \frac{180}{6}  +  {cos}^{2}  \frac{180}{3}  -  {tan}^{2}  \frac{180}{4}  \\  \\  \\  \implies \bf \: ( {sin \: 30)}^{2}  +  {(cos \: 60)}^{2}  -  {(tan \: 45)}^{2}  \\  \\  \\  \implies \bf \:  {( \frac{1}{2}) }^{2}  + ( \frac{1}{2} ) {}^{2}  -  {1}^{2} \:  \:  \:  \:  \:  \:  \:   \:  \:  \:  \:  \:  \: \huge \{  \tiny \: (sin30 =  \frac{1}{2}  ) \:  \: (cos \: 60 =  \frac{1}{2}) \\  \\  \\  \implies \bf \:  \frac{1}{4}  +  \frac{1}{4}  - 1 \\  \\  \\  \implies \bf \:  -  \frac{1}{2}

Similar questions