Math, asked by g2000, 1 year ago

Prove that sin^2 A/ cos ^2 A+ cos^2 A/sin^2 A= sec^2 *cosec^2 A -2

Answers

Answered by kaushikravikant
5
sin^2A/cos^2A  +  cos^2A/sin^2A
on taking lcm
sin^4A + cos^4A
   sin²A cos²A
(sin²A + cos²A)² - 2sin²Acos²A              (sin²A+cos²A=1)
        sin²Acos²A
⇒  1 - 2sin²Acos²A                              (1/sinA = cosecA  ,1/cosA=secA)
       sin²Acos²A
cosec²Asec²A - 2  = RHS
Hence proved
Answered by prakriti27
1
sin^2A/cos^2A  +  cos^2A/sin^2A
on taking lcm
sin^4A + cos^4A
   sin²A cos²A
⇒ (sin²A + cos²A)² - 2sin²Acos²A             
        sin²Acos²A
⇒  1 - 2sin²Acos²A                             
       sin²Acos²A
cosec²Asec²A - 2  = RHS
Hence proved

prakriti27: pls! mark as the best....
Similar questions