Prove that sin^2 A/ cos ^2 A+ cos^2 A/sin^2 A= sec^2 *cosec^2 A -2
Answers
Answered by
5
sin^2A/cos^2A + cos^2A/sin^2A
on taking lcm
sin^4A + cos^4A
sin²A cos²A
⇒ (sin²A + cos²A)² - 2sin²Acos²A (sin²A+cos²A=1)
sin²Acos²A
⇒ 1 - 2sin²Acos²A (1/sinA = cosecA ,1/cosA=secA)
sin²Acos²A
cosec²Asec²A - 2 = RHS
Hence proved
on taking lcm
sin^4A + cos^4A
sin²A cos²A
⇒ (sin²A + cos²A)² - 2sin²Acos²A (sin²A+cos²A=1)
sin²Acos²A
⇒ 1 - 2sin²Acos²A (1/sinA = cosecA ,1/cosA=secA)
sin²Acos²A
cosec²Asec²A - 2 = RHS
Hence proved
Answered by
1
sin^2A/cos^2A + cos^2A/sin^2A
on taking lcm
sin^4A + cos^4A
sin²A cos²A
⇒ (sin²A + cos²A)² - 2sin²Acos²A
sin²Acos²A
⇒ 1 - 2sin²Acos²A
sin²Acos²A
cosec²Asec²A - 2 = RHS
Hence proved
on taking lcm
sin^4A + cos^4A
sin²A cos²A
⇒ (sin²A + cos²A)² - 2sin²Acos²A
sin²Acos²A
⇒ 1 - 2sin²Acos²A
sin²Acos²A
cosec²Asec²A - 2 = RHS
Hence proved
prakriti27:
pls! mark as the best....
Similar questions
Hindi,
8 months ago
Math,
8 months ago
Math,
8 months ago
Chemistry,
1 year ago
Environmental Sciences,
1 year ago