Math, asked by NandakishorAV, 6 months ago

Prove that sin^2 θ- cos^2 θ= 2sin^2 θ -1​

Answers

Answered by prernapal08081985
3

Step-by-step explanation:

hope it help you .

plz marked me as brainlist

Attachments:
Answered by ajay8949
2

 \sin  {}^{2} θ -  \cos {}^{2} θ = 2 { \sin }^{2} θ - 1

lhs = \sin  {}^{2} θ -  \cos {}^{2} θ

\sin  {}^{2} θ  +   \cos {}^{2} θ = 1 \\   \cos {}^{2} θ  = 1 - \sin  {}^{2} θ

\sin  {}^{2} θ   - (  1 - \sin  {}^{2} θ)

\sin  {}^{2} θ   -   1  + \sin  {}^{2} θ)

2\sin  {}^{2} θ   -  1  \\ \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  hp

\mathcal\orange{Please\:mark\:as\:brainliest.....}

Similar questions