Math, asked by am0487485, 2 months ago

Prove that (sin + )2+ (cos + sec )2 = 7 +2θ + 2θ

Answers

Answered by mathdude500
4

Given Statement is :-

Prove that

 \rm {(sin \theta \: +  \: cosec\theta \:) }^{2} +  {(cos\theta \: + sec\theta \:)}^{2}  = 7 +  {tan}^{2}  \theta \: +  {cot}^{2} \theta \:

─━─━─━─━─━─━─━─━─━─━─━─━─

\begin{gathered}\Large{\bold{\pink{\underline{Formula \:  Used \::}}}}  \end{gathered}

  \boxed{ \blue{\rm {(x + y)}^{2}  =  {x}^{2} +  {y}^{2}   + 2xy}}

  \boxed{ \blue{\rm {sin}^{2}x +  {cos}^{2}x = 1   }}

  \boxed{ \blue{\rm {sec}^{2} x = 1 +  {tan}^{2}x  }}

  \boxed{ \blue{\rm  {cosec}^{2}x = 1 +  {cot}^{2}x  }}

  \boxed{ \blue{\rm cosecx \times sinx = 1}}

  \boxed{ \blue{\rm secx \times cosx = 1}}

─━─━─━─━─━─━─━─━─━─━─━─━─

\large\underline\purple{\bold{Solution :-  }}

Consider LHS,

\rm {(sin \theta \: +  \: cosec\theta \:) }^{2} +  {(cos\theta \: + sec\theta \:)}^{2}

 \rm \:  =  {sin}^{2} \theta \: +  {cosec}^{2} \theta \: + 2sin\theta \:cosec\theta \: +  {cos}^{2} \theta \: +  {sec}^{2} \theta \: + 2cos\theta \:sec\theta \:

 \rm \:  = ( {sin}^{2} \theta \: +  {cos}^{2} \theta \:) + 2  \times 1+ 2  \times 1+ ( {sec}^{2} \theta \: +  {cosec}^{2} \theta \:)

 \rm = 1 + 2 + 2 + 1 +  {tan}^{2} \theta \: + 1 +  {cot}^{2} \theta \:

 \rm \:  = 7 +  {tan}^{2} \theta \: +  {cot}^{2} \theta \:

 \rm \:  = RHS

\large{\boxed{\boxed{\bf{Hence, Proved}}}}

─━─━─━─━─━─━─━─━─━─━─━─━─

Additional Information:-

Relationship between sides and T ratios

  • sin θ = Opposite Side/Hypotenuse
  • cos θ = Adjacent Side/Hypotenuse
  • tan θ = Opposite Side/Adjacent Side
  • sec θ = Hypotenuse/Adjacent Side
  • cosec θ = Hypotenuse/Opposite Side
  • cot θ = Adjacent Side/Opposite Side

Reciprocal Identities

  • cosec θ = 1/sin θ
  • sec θ = 1/cos θ
  • cot θ = 1/tan θ
  • sin θ = 1/cosec θ
  • cos θ = 1/sec θ
  • tan θ = 1/cot θ

Co-function Identities

  • sin (90°−x) = cos x
  • cos (90°−x) = sin x
  • tan (90°−x) = cot x
  • cot (90°−x) = tan x
  • sec (90°−x) = cosec x
  • cosec (90°−x) = sec x

Fundamental Trigonometric Identities

  • sin²θ + cos²θ = 1
  • sec²θ - tan²θ = 1
  • cosec²θ - cot²θ = 1
Answered by sapana050607
5

Step-by-step explanation:

yaar Kaal pata nhi kaise meri id delete ho gyi

u can contact me on telegram mishrasattu

Similar questions