Math, asked by sakeenayadav123, 1 month ago

Prove that , sin^2 theta + cos^2 theta = 1 - 3 sin^2 theta × cos^2 theta.​

Answers

Answered by mathdude500
3

Appropriate Question

Prove that

\rm :\longmapsto\: {sin}^{6}\theta +  {cos}^{6}\theta = 1 - 3 {sin}^{2}\theta \:  {cos}^{2}\theta

 \green{\large\underline{\sf{Solution-}}}

Consider LHS

\rm :\longmapsto\: {sin}^{6}\theta +  {cos}^{6}\theta =

\rm \:  =  \:  {( {sin}^{2} \theta)}^{3}  +  {( {cos}^{2} \theta)}^{3}

We know

\boxed{ \tt{ \:  {x}^{3} +  {y}^{3} = {(x + y)}^{3} - 3xy(x + y) \: }}

So, using this identity, we get

\rm \:  =  \:  {\bigg[ {sin}^{2}\theta +  {cos}^{2}\theta\bigg]}^{3} - 3  {sin}^{2}\theta {cos}^{2}\theta( {sin}^{2}\theta +  {cos}^{2}\theta)

We know,

\boxed{ \tt{ \:  {sin}^{2}x +  {cos}^{2}x = 1 \: }}

So, using this identity, we get

\rm \:  =  \:  {(1)}^{3} - 3 {sin}^{2}\theta \:  {cos}^{2}\theta(1)

\rm \:  =  \:  1 - 3 {sin}^{2}\theta \:  {cos}^{2}\theta

Hence,

\rm \implies\:\boxed{ \tt{ \: {sin}^{6}\theta +  {cos}^{6}\theta \: =  \:  1 - 3 {sin}^{2}\theta \:  {cos}^{2}\theta \: }}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Additional Information:-

Relationship between sides and T ratios

sin θ = Opposite Side/Hypotenuse

cos θ = Adjacent Side/Hypotenuse

tan θ = Opposite Side/Adjacent Side

sec θ = Hypotenuse/Adjacent Side

cosec θ = Hypotenuse/Opposite Side

cot θ = Adjacent Side/Opposite Side

Reciprocal Identities

cosec θ = 1/sin θ

sec θ = 1/cos θ

cot θ = 1/tan θ

sin θ = 1/cosec θ

cos θ = 1/sec θ

tan θ = 1/cot θ

Co-function Identities

sin (90°−x) = cos x

cos (90°−x) = sin x

tan (90°−x) = cot x

cot (90°−x) = tan x

sec (90°−x) = cosec x

cosec (90°−x) = sec x

Fundamental Trigonometric Identities

sin²θ + cos²θ = 1

sec²θ - tan²θ = 1

cosec²θ - cot²θ = 1

Answered by coc333753
1

ok bye see you later when you want to happy

Similar questions