prove that sin^2 theta + cos^2 theta = 1
Answers
Answered by
0
- sin theta=perpendicular/hypotenuse
- cose theta=base/hypotenuse
- sin^2theta+cos^2theta=(perpendicular/hypotenuse)^2+(base/hypotenuse)^2
=perpendicular^2/hypotenuse ^2+base^2/hypotenuse ^2
=perpendicular ^2+base^2/hypotenuse ^2
=hypotenuse ^2/hypotenuse ^2(by pythagorus theorem)
=1
hope it helped!
Answered by
2
In any right angled triangle ABC, let ∠B is the right angle.
Using, Pythagoras theorem
AC² = BC² + AB²
sinA = height/hypotenuse = BC/AC
cosA = base/hypotenuse = AB/AC
Square both sides and then add:
⇒ sin²A + cos²A = (BC/AC)² + (AB/AC)²
= BC²/AC² + AB²/AC²
= (BC² + AB²)/AC²
= AC²/AC²
= 1
Hence, sin²A + cos²A = 1
In general we say sin²θ + cos²θ = 1
Similar questions