prove that: sin^2 theta + cos^4 theta = cos^2 theta + sin^4 theta
Answers
Answered by
8
Answer:-
To Prove:
Sin² A + Cos⁴ A = Cos² A + Sin⁴ A
We know that,
Sin² A + Cos² A = 1
→ Cos² A = 1 - Sin² A
On squaring both sides we get,
→ (Cos² A)² = (1 - sin² A)²
Using (a - b)² = a² + b² - 2ab in RHS we get,
→ Cos⁴ A = 1² + Sin⁴ A - 2*(1)*(sin² A)
→ Cos⁴ A = 1 + sin⁴ A - 2Sin² A
Putting the value of "Cos⁴ A" we get,
→ Sin² A + 1 + sin⁴ A - 2Sin² A = Cos² A + sin⁴ A
→ 1 - Sin² A + Sin⁴ A = Cos² A + Sin⁴ A
Putting the value of "1 - Sin² A = Cos² A" we get,
→ Cos² A + Sin⁴ A = Cos² A + Sin⁴ A
→ LHS = RHS
Hence, Proved.
Similar questions