Math, asked by chowc780, 10 months ago

Prove that
=Sin 2A/1-Cos2A = cos A​

Answers

Answered by Anonymous
3

Answer:

hey mate hope this helps

Attachments:
Answered by 18shreya2004mehta
2

Answer:

jGiven

LHS =\frac{sin2A}{1-cos2A}

1−cos2A

sin2A

= \frac{sin2A}{(cos^{2}A+cos^{2})-(cos^{2}A-sin^{2}A)}

(cos

2

A+cos

2

)−(cos

2

A−sin

2

A)

sin2A

/* Since ,

i) 1 = cos²A + sin²A

ii ) cos2A = cos²A-sin²A */

= \frac{2sinAcosA}{sin^{2}A+cos^{2}A-cos^{2}A+sin^{2}A}

sin

2

A+cos

2

A−cos

2

A+sin

2

A

2sinAcosA

/* we know that,

sin2A = 2sinAcosA */

= \frac{2sinAcosA}{2sin^{2}A}

2sin

2

A

2sinAcosA

After cancellation, we get

= \frac{cosA}{sinA}

sinA

cosA

= cotAcotA

= RHSRHS

Therefore,

\frac{sin2A}{1-cos2A}

1−cos2A

sin2A

=cotA

Similar questions