Math, asked by pavankumar0510, 11 months ago

prove that sin^2A×cosec^2A=1​

Answers

Answered by Anonymous
20

AnswEr:

To prove:

  • Sin²A × Cosec²A = 1

SoluTion:

We know that,

\large{\boxed{\sf{\red{Sin^2\:A\:=\:\dfrac{1}{Cosec^2\:A}}}}}

\therefore \sf{Sin^2\:\times\:\dfrac{1}{Sin^2\:A}}

Cancelling Sin²A and Sin²A.

: \implies \sf{\cancel{Sin^2\:A}\:\times\:\dfrac{1}{\cancel{Sin^2\:A}}}

: \implies 1

\large{\therefore} \large{\boxed{\sf{Sin^2\:A\:\times\:Cosec^2\:A\:=1}}}

Hence proved!

\rule{200}2

ExTra InFo:

  • Cosec²A - Cot²A = 1

  • Sin²A + Cos²A = 1

  • Sec²A - Tan²A = 1
Answered by Anonymous
4

\huge \underline {\underline{ \mathfrak{ \green{AnS}wEr \colon}}}

We have to prove :

\large{\boxed{\sf{\sin^2 A \: \times \: \cosec ^2 \: = \: 1}}}

\rule{200}{2}

Take \underline{ \mathbb{R.H.S}}

\implies {\sf{\sin^2 A \: \times \: \cosec ^2 A}} \\ \\ \implies {\sf{\sin^2A \: \times \: \dfrac{1}{\sin^2 A}} \: \: \: \big[\cosec^2A \: = \: \dfrac{1}{\sin^2 A }\big] } \\ \\ \implies {\sf{1}}

Hence,

\mathbb{L.H.S \: = \: R.H.S}

___________________________

Some Identities are :

  • Sin²A + Cos²A = 1

  • SinA = 1/CosecA

  • CosA = 1/SecA

  • Sec²A - Tan²A = 1

  • Cosec²A - Cot²A = 1

  • Sin(90° - A) = Cos A

  • Cos(90° - A) = SinA

  • Tan(90° - A) = CotA

  • Cot(90° - A) = TanA
Similar questions