Math, asked by arpitajadhav1905, 3 months ago

. Prove that
sin^2A. tan A + cos²A.cot A + 2 sin A.cos A = tan A + cot A​

Answers

Answered by nidhahussain01
1

Answer:

here is the answer

Sin²A.TanA  + Cos²A.CotA  + 2SinA.CosA  = TanA + CotA

Step-by-step explanation:

Sin²A.TanA  + Cos²A.CotA  + 2SinA.CosA  = TanA + CotA

LHS

= Sin²A.TanA  + Cos²A.CotA  + 2SinA.CosA

using TanA = SinA/CosA    & CotA = CosA/SinA

= Sin²A.SinA/CosA  + Cos²A.CosA/SinA  + 2SinA.CosA

= Sin³A/CosA  + Cos³A./SinA  + 2SinA.CosA

= ( Sin⁴A  + Cos⁴A  + 2Sin²A.Cos²A )/CosASinA

= ( (Sin²A)²  + (Cos²A)²  + 2Sin²A.Cos²A )/CosASinA

using a² + b² + 2ab = (a + b)²

a = Sin²A  & b = Cos²A

= ((Sin²A)  + (Cos²A))²/CosA.SinA

using Sin²A + Cos²A = 1

= 1/CosA.SinA

= (Sin²A + Cos²A)/CosASinA

= Sin²A/CosASinA + Cos²A/CosASinA

= SinA/CosA  + CosA/SinA

= TanA  + CotA

= RHS

QED

Proved

Answered by Somya0000
1

Answer:

L.H.S. = R.H.S.

HOPE THIS HELPS YOU....

STAY SAFE...

Attachments:
Similar questions