Prove that : (sin θ-2sin^3)/(2cos^3θ-cosθ) = tan θ
Answers
we have to prove that, (sinθ - 2sin³θ)/(2cos³θ - cosθ) = tanθ
proof : LHS = (sinθ - 2sin³θ)/(2cos³θ - cosθ)
= {sinθ(1 - 2sin²θ)}/{cosθ(2cos²θ - 1)}
we know, cos2x = cos²x - sin²x
= cos²x - (1 - cos²x)
= 2cos²x - 1
or, cos2x = cos²x - sin²x
= 1 - sin²x - sin²x = 1 - 2sin²x
so, 1 - 2sin²θ = cos2θ .....(1)
2cos²θ - 1 = cos2θ .....(2)
= {sinθ(1 - 2sin²θ)}/{cosθ(2cos²θ - 1)}
from equation (1) and (2) we get,
= {sinθ(cos2θ)}/{cosθ(cos2θ)}
= tanθ = RHS
hence proved//
also read similar questions : Prove that :Sec²θ – (sin²θ - 2Sin⁴θ/ 2Cos⁴θ–Cos²θ) = 1.
https://brainly.in/question/3015616
Prove the following trigonometric identities. (secθ + cosθ) (secθ − cosθ) = tan²θ+sin²θ
https://brainly.in/question/11786892