Math, asked by vedanshbhatt2, 7 months ago

prove that
( sinθ-2sin3θ) /(2cos3θ-cosθ ) =tanθ


(PLEASE GIVE ANSWER IF YOU KNOW FAST)​

Answers

Answered by Anonymous
1

GIVEN :-

( taking ∅ = a )

 \implies \rm{ \dfrac{sin  \: a - 2 \:  {sin}^{3}   a}{2 \: cos {}^{3} a - cos \: a} }

TO FIND :-

\implies \rm{ \dfrac{sin  \: a - 2 \:  {sin}^{3}   a}{2 \: cos {}^{3} a - cos \: a} = tan \: a }

SOLUTION :-

taking LHS :-

\implies \rm{ \dfrac{sin  \: a - 2 \:  {sin}^{3}   a}{2 \: cos {}^{3} a - cos \: a} }

taking sin a common

\implies \rm{ \dfrac{sin  \: a(1 - 2 \:  {sin}^{2}   a)}{2 \: cos {}^{3} a - cos \: a} }

taking cos a common

\implies \rm{ \dfrac{sin  \: a(1 - 2 \:  {sin}^{2}   a)}{cos  \: a(  2 \: {cos}^{2} a -1 )} }

now we know that according to trignomatric ratios :-

 \implies \boxed{ \rm{tan \: a =  \dfrac{sin \: a}{cos \: a} }}

hence ,

\implies \rm{ \dfrac{sin  \: a(1 - 2 \:  {sin}^{2}   a)}{cos  \: a(  2 \: {cos}^{2} a -1 )} } =  \rm{ (tan \: a)\dfrac{(1 - 2 \:  {sin}^{2}   a)}{ (  2 \: {cos}^{2} a -1 )} }

now according to trignomatric identities :-

 \implies \boxed{ \rm{ {cos}^{2} a = 1 -  {sin}^{2} a}}

so ,

 \implies\rm{ (tan \: a)\dfrac{(1 - 2 \:  {sin}^{2}   a)}{ (  2 (1 -  {sin}^{2} a )-1 )} }

now solving further ( denominator )

 \implies\rm{ (tan \: a)\dfrac{(1 - 2 \:  {sin}^{2}   a)}{ (  2 -  2 \: {sin}^{2} a  - 1)} }

 \implies\rm{ (tan \: a)\dfrac{(1 - 2 \:  {sin}^{2}   a)}{ (  1 -  2 \: {sin}^{2} a  )} }

now cancel outting (1 - 2 sin² a)

 \implies\rm{  \bf{tan \: a} }

so , LHS = RHS

and

\implies  \boxed{ \boxed {\rm{ \dfrac{sin  \: a - 2 \:  {sin}^{3}   a}{2 \: cos {}^{3} a - cos \: a} = tan \: a }}}

OTHER INFORMATION :-

TRIGNOMETRIC IDENTITIES

  • sin²∅ + cos²∅ = 1

  • sec²∅ - tan²∅ = 1

  • cosec²∅ - cot²∅ = 1

TRIGNOMETRIC RATIOS

  • sin ∅ = 1 / cosec ∅

  • cos ∅ = 1 / sec ∅

  • tan ∅ = 1 / cot ∅

TRIGNOMETRIC COMPLEMENTRY ANGLES

  • sin ∅ = cos ( 90 - ∅ )

  • cos ∅ = sin ( 90 - ∅ )

  • sec ∅ = cosec ( 90 - ∅ )

  • cosec ∅ = sec ( 90 - ∅ )

  • tan ∅ = cot ( 90 - ∅ )

  • cot ∅ = tan ( 90 - ∅ )
Similar questions