Prove
that
sinΘ-2sin³Θ/2cos³Θ-cosΘ=tanΘ
...theta=Θ
Answers
Answered by
0
Answer:
LHS = RHS
Step-by-step explanation:
sinΦ(1-2sin²Φ)/cosΦ(2cos²-1) = tanΦ
=>sinΦ(cos²Φ-sin²Φ)/-cos(sin²Φ-cos²Φ)=tanΦ
=>sinΦ(cosΦ-sinΦ)(cosΦ+sinΦ)/
-cos(sinΦ-cosΦ)(cosΦ+sinΦ) = tanΦ
=>sinΦ(cosΦ-sinΦ)/cosΦ(cosΦ-sinΦ) = tanΦ
=>sinΦ/cosΦ = tanΦ
=> tanΦ = tanΦ
Hence, LHS = RHS Proved.
theta = Φ
Answered by
2
sin²θcosec(90°-θ) - cot²(90°-θ)cosθ = sin²θ/cosθ - tan²θ cosθ = sin²θ/cosθ - sin²θ/cosθ cos²θ
= sin²θ/cosθ - sin²θ/cosθ = 0
Please follow me if you found this helpful
Similar questions
Science,
2 months ago
English,
2 months ago
Social Sciences,
2 months ago
Math,
5 months ago
India Languages,
11 months ago
Math,
11 months ago
Social Sciences,
11 months ago