prove that (sin 2theta + cos 2 theta=1)
Answers
We have to prove that sin² θ + cos² θ = 1.
This formula can easily be proven by a right triangle!
Consider a right triangle having an acute angle θ, where the third angle will be 90° - θ.
We get,
sin θ = (opposite side of θ) / (hypotenuse)
sin² θ = [(opposite side of θ) / (hypotenuse)]² = (opposite side of θ)² / (hypotenuse)²
And,
cos θ = (adjacent side of θ) / (hypotenuse)
cos² θ = [(adjacent side of θ) / (hypotenuse)]² = (adjacent side of θ)² / (hypotenuse)²
And we remember the famous Pythagoras' Theorem.
(opposite side of θ)² + (adjacent side of θ)² = (hypotenuse)²
Now,
LHS
⇒ sin² θ + cos² θ
⇒ [(opposite side of θ)² / (hypotenuse)²] + [(adjacent side of θ)² / (hypotenuse)²]
⇒ [(opposite side of θ)² + (adjacent side of θ)²] / (hypotenuse)²
⇒ (hypotenuse)² / (hypotenuse)²
⇒ 1
⇒ RHS