prove that sin 3 theta + cos 3 theta divided by cos theta minus sin theta is equals to 1 + 2 Sin 2 theta
Answers
Answer:
sin 3 theta + cos 3 theta upon cos theta minus sin theta equal to 1 + 2 sin 2 theta
equal to 1 + 2 sin 2 theta
3 sin theta - 4 sin cube theta + 4 cos cube theta minus 3 cos theta upon cos theta minus sin theta
3in the bracket sin theta minus cos theta bracket of minus 4 in the bracket sin cube minus cos cube bracket of upon cos theta minus sin theta
3 in the bracket sin theta minus cos theta bracket of minus 4 into bracket sin theta minus cos theta bracket of in the bracket 1 + sin theta into cos theta bracket of upon sin theta minus cos theta
sin theta minus cos theta in the bracket 3 minus 4 on the bracket 1 + sin theta into cos theta bracket of upon -
sin theta minus cos theta
Step-by-step explanation:
-3+ 4 + 4 sin theta into cos theta
1 + 4 sin theta into cos theta
1 + 2 sin 2 theta