Math, asked by DJbhokarkha, 1 year ago

Prove that 【sin^3 thita + cos^3 thita / sin thita + cos thita】+sin thita+ cos thita= 1

Answers

Answered by Swarup1998
1
The answer is given below :

Now, L.H.S.

 =  \frac{ {sin}^{3}  \alpha  +  {cos}^{3}  \alpha }{sin \alpha  + cos \alpha }  + sin \alpha  \: cos \alpha  \\  \\  =  \frac{(sin \alpha  + cos \alpha )( {sin}^{2} \alpha  +  {cos}^{2}  \alpha  - sin \alpha  \: cos) }{(sin \alpha  + cos \alpha )}  + sin \alpha  \: cos \alpha  \\  \\  = 1 - sin \alpha  \:cos \alpha  + sin \alpha  \: co \alpha  \\  \\  = 1

= R.H.S. [Proved]

Thank you for your question.
Similar questions