Math, asked by darshanshahu64, 4 months ago

prove that sin 30 = cos 60

Answers

Answered by paliaabhipsa
0

Answer:

don't know the answer sorry for spamming

Answered by Abhiram5566
4

Hello Dear,

Thanks For Asking the Question :)

Your Answer is below

----------------------------------------------------------------------------------------------

Question :-

\mathrm{Prove\:that \: sin\: 30^\circ = cos\:60^\circ}

Answer :-

\huge{\underline{\textsl{Sin\:Values}}}}\\\\ \mathrm{sin0^\circ=\sqrt{\frac{0}{4} }=0\\ }\\\\ \large{\boxed{\mathrm{sin30^\circ=\sqrt{\frac{1}{4} }=\frac{1}{2} }}}\\\\\\ \mathrm{sin45^\circ=\sqrt{\frac{2}{4} }=\sqrt{\frac{1}{2} }=\frac{1}{\sqrt{2} } \\    }\\\\ \mathrm{sin60^\circ}=\sqrt{\frac{3}{4} }=}\frac{\sqrt{3} }{4} \\  }\\ \mathrm{sin90^\circ=\sqrt{\frac{4}{4} }=1 }

\huge{\underline{\textsl{Cos\:Values }}}\\\\ \mathrm{cos0^\circ=\sqrt{\frac{4}{4} } =1}\\\\ \mathrm{cos30^\circ=\sqrt{\frac{3}{4} }=\frac{\sqrt{3} }{4}  }\\\\ \mathrm{cos45^\circ=\sqrt{\frac{2}{4} }=\sqrt{\frac{1}{2} } = \frac{1}{\sqrt{2} } }\\\\ \large{\boxed{\mathrm{cos60^\circ=\sqrt{\frac{1}{4} }=\frac{1}{2}  }}}\\\\\\ \mathrm{cos90^\circ=\sqrt{\frac{0}{4} }=0 }

\mathrm{Substituting\:Values\:Of\:sin\ 30^\circ \:and\:cos\ 30^\circ\: value,\: we\:get}

\mathrm{sin\ 30^\circ=cos\ 60^\circ}

\mathrm{\frac{1}{2}=\frac{1}{2}  }

\Large{\bigstar\ {\textsf{Hence Proved. . . .}}\ \bigstar}

----------------------------------------------------------------------------------------------

Hope It Helps You Dear ! :D     ^_^

\large{\textsc{By Abhiram5566}}

                                   MARK ME AS BRAINLIEST ANSWER

----------------------------------------------------------------------------------------------

Similar questions