Math, asked by sraghuram2004, 10 months ago

Prove that sin(30+theta) + cos(60+theta) = costheta

Answers

Answered by shaktijay17
5

Answer:

sin(30+@)+cos(60+@)

sin30.cos@+cos30.sin@[email protected]@

1/2cos@+√3/2sin@+1/2cos @-√3/2sin@

1/2cos@+1/2cos@

cos@

prove that

Answered by Anonymous
2

Given:

  • sin(30°+θ)+cos(60°+θ) = cosθ

To Find:

  • To Prove that,  sin(30°+θ)+cos(60°+θ) = cosθ

Solution:

  • Consider LHS = sin(30°+θ)+cos(60°+θ)  → (1) and RHS = cosθ
  • We have standard trigonometry formula saying,
  • sin(A+B) = sinAcosB+cosAsinB and cos(A+B) = cosAcosB - sinAsinB
  • The mentioned formula can be applied for equation (1)
  • We get, RHS = sin30°cosθ + cos30°sinθ + cos60°cosθ - sin60°sinθ
  • RHS = \frac{1}{2} cosθ + \frac{\sqrt{3} }{2}sinθ + \frac{1}{2}cosθ - \frac{\sqrt{3} }{2}sinθ = cosθ = RHS
  • LHS = RHS

Hence Proved

sin(30°+θ)+cos(60°+θ) = cosθ

Similar questions