Math, asked by dbthakkar231979, 28 days ago

prove that Sin ( + 30°) = Cos + Sin( −30) ​

Answers

Answered by MathHacker001
9

\large\bf\underline\red{Correct  \: Question \:  :-}

\rm{ \sin( \alpha  + 30\degree) =  \cos \alpha  +  \sin( \alpha   - 30\degree)  }

\large\bf\underline\red{Answer  \: :-}

Proof :-

\sf\longrightarrow{RHS = \cos \alpha  +  \sin( \alpha  - 30 \degree)   } \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\ \sf\longrightarrow{RHS = \cos \alpha  +  \sin \cos30 \degree -   \cos \alpha  \sin30  \degree  } \\  \\ \sf\longrightarrow{RHS =  \cos \alpha  +  \sin \alpha  \cos30  \degree - \frac{( \cos \alpha )}{2 } } \:  \:  \:  \:  \:  \\  \\\sf\longrightarrow{RHS =  \sin \alpha  \cos30 \degree +  \frac{( \cos \alpha ) }{2}   }  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\ \sf\longrightarrow{RHS =  \sin \alpha  \cos30 \degree + ( \cos \alpha) \times  \frac{1}{2}   } \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\ \sf\longrightarrow{RHS = \sin \alpha  \cos30 \degree +  \cos \alpha  \sin30 \degree } \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\ \sf\longrightarrow{RHS =  \sin( \alpha  + 30 \degree) } \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\ \bf\longrightarrow \red{  \cos \alpha  +  \sin( \alpha  + 30 \degree) =  \sin( \alpha  + 30 \degree) } \:  \:  \:  \:  \:  \:

Hence Proved !

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Trigonometry table :-

\begin{gathered}\boxed{\boxed{\begin{array}{ |c |c|c|c|c|c|} \bf\angle A & \bf{0}^{ \circ} & \bf{30}^{ \circ} & \bf{45}^{ \circ} & \bf{60}^{ \circ} & \bf{90}^{ \circ} \\ \\ \rm sin A & 0 & \dfrac{1}{2}& \dfrac{1}{ \sqrt{2} } & \dfrac{ \sqrt{3}}{2} &1 \\ \\ \rm cos \: A & 1 & \dfrac{ \sqrt{3} }{2}& \dfrac{1}{ \sqrt{2} } & \dfrac{1}{2} &0 \\ \\ \rm tan A & 0 & \dfrac{1}{ \sqrt{3} }&1 & \sqrt{3} & \rm \infty \\ \\ \rm cosec A & \rm \infty & 2& \sqrt{2} & \dfrac{2}{ \sqrt{3} } &1 \\ \\ \rm sec A & 1 & \dfrac{2}{ \sqrt{3} }& \sqrt{2} & 2 & \rm \infty \\ \\ \rm cot A & \rm \infty & \sqrt{3} & 1 & \dfrac{1}{ \sqrt{3} } & 0 \end{array}}}\end{gathered}

Similar questions