Math, asked by satvi1234, 1 year ago

prove that Sin 34°+cos 64°- cos 4°=0

Answers

Answered by Sanu07
120
Sin34° + Cos64° - Cos4°
= Sin34° + Cos(34 + 30)° - Cos(34 - 30)°
= Sin34° + (-2Sin34°Sin30°)
= Sin34° - 2 × Sin34° × 1/2
= Sin34° - Sin34°
= 0 (Proved)
Answered by harendrachoubay
23

\sin 34+\cos 64-\cos 4=0, proved.

Step-by-step explanation:

Prove that, \sin 34+\cos 64-\cos 4=0

L.H.S. =\sin 34+\cos 64-\cos 4

=\sin 34+\cos (34+30)-\cos (34-30)

=\sin 34+\cos 34\cos 30-\sin 34\sin 30-(\cos 34\cos 30+\sin 34\sin 30)

Using trigonometric identity,

\cos (A+B)=\cos A\cos B-\sin A\sin B and

\cos (A-B)=\cos A\cos B+\sin A\sin B

=\sin 34+\cos 34\cos 30-\sin 34\sin 30-\cos 34\cos 30-\sin 34\sin 30

=\sin 34-\sin 34\sin 30-\sin 34\sin 30

=\sin 34-2\sin 34\sin 30

=\sin 34-2\sin 34(\dfrac{1}{2})

=\sin 34-\sin 34

= 0

= R.H.S., proved

Hence, \sin 34+\cos 64-\cos 4=0, proved.

Similar questions