prove that (Sin^3A+cos^3A/sinA+cosA) + (sin^3A-cos^3A/sinA-cosA)=2
Answers
Answered by
14
First break the cube then divide by the denominator and then some terms will be cancelled and will be left with
1+1 = 2 = RHS (proved)
1+1 = 2 = RHS (proved)
Answered by
79
Trigonometry,
We have to prove that
(sin³A+cos³A/sinA+cosA) + (sin³A-cos³A/sinA-cosA)=2
LHS = (sin³A+cos³A/sinA+cosA) + (sin³A-cos³A/sinA-cosA)
= {(sinA+cosA)(sin²A+cos²A-sinA.cosA)}/(sinA+cosA) + {(sinA-cosA)(sin²A+cos²A+sinA.cosA)}/(sinA-cosA)
= (sin²A+cos²A-sinA.cosA) + (sin²A+cos²A+sinA.cosA)
= 1-sinA.cosA+1+sinA.cosA
= 1+1
= 2 = RHS [proved]
That's it
Hope it helped (^_^メ)
We have to prove that
(sin³A+cos³A/sinA+cosA) + (sin³A-cos³A/sinA-cosA)=2
LHS = (sin³A+cos³A/sinA+cosA) + (sin³A-cos³A/sinA-cosA)
= {(sinA+cosA)(sin²A+cos²A-sinA.cosA)}/(sinA+cosA) + {(sinA-cosA)(sin²A+cos²A+sinA.cosA)}/(sinA-cosA)
= (sin²A+cos²A-sinA.cosA) + (sin²A+cos²A+sinA.cosA)
= 1-sinA.cosA+1+sinA.cosA
= 1+1
= 2 = RHS [proved]
That's it
Hope it helped (^_^メ)
Similar questions