Math, asked by ymtajkhan, 23 hours ago

Prove that sin 3x = 3 sinx - 4sin²x ​

Answers

Answered by harshit029372
0

Answer:

4sin×3÷3"(₹(₹(22(2)#)2)2(₹₹!₹

Answered by gausia8080
1

To prove: sin3x=3sinx-4sin^{2} x.

L.H.S: sin3x=sin(2x+x)

By applying formula: sin(\alpha +\beta )=sin\alpha .cos\beta +cos\alpha .sin\beta.

=sin2x.cosx+cos2x.sinx

We know that sin2x=2sinx.cosx and cos2x=1-2sin^{2} x

=(2sinx.cosx)\times cosx + (1-2sin^{2} x)\times sinx

=2sinx.cos^{2} x+sinx-2sin^{3} x

We know that, cos^{2} x=1-sin^{2} x

=2sinx(1-sin^{2} x)+sinx-2sin^{3} x

=2sinx-2sin^{3} x+sinx-2sin^{3} x

=2sinx+sinx-2sin^{3} x-2sin^{3} x

=3sinx-4sin^{3} x = R.H.S.

Here, L.H.S is equal to R.H.S.

Hence, proved.

Similar questions