Math, asked by jovinjsartho, 7 months ago

Prove that sin 3x sin^3x + cos 3x cos^3x = cos^3 2x

Answers

Answered by sangeethailaiyaraja1
2

Step-by-step explanation:

sin3x=3sinx−4sin 3 x

∴sin 3 x= 1/4 (3sinx−sin3x)

Similarly, cos 3x=1 /4(3cosx+cos3x)

L.H.S.= 1/4 [sin3x(3sinx−sin3x+cos3x(3cosx+cos3x)

=1/4 [3cos(3x−x)+(cos 2 3x−sin 2 3x)]

= 1/4 [3cos2x+cos6x]

=1/4 [3cosA+cos3A]

=cos 3A,by(2)=cos 3 2x

∵A=2x

Similar questions
Math, 3 months ago