Math, asked by anjalishyam6901, 9 months ago

Prove that Sin 4 A +cos 4 A =1– 2 sin2 A . Cos 2A

Answers

Answered by ankushyadav60
1

Answer:

cuucchcxhcyxhcydoyxt8xix8td8td8td8ditd9txoyc9yyocoyffocy

LHS = sin4A  - cos4A 

⇒ LHS = (sin2A)2−(cos2A)2

⇒ LHS = (sin2A+cos2A)(sin2A−cos2A)

⇒ LHS = sin2A −cos2A     [∵sin2A+cos2A=1]

⇒ LHS = sin2A −(1−sin2A ) = 2sin2A−1

⇒ LHS = 2(1−cos2A)−1=1−2cos2A = RHS

ffyhxychcydhcyshxysjfyshx5shcuskcudjc6xj0

Similar questions