Prove that Sin 4 A +cos 4 A =1– 2 sin2 A . Cos 2A
Answers
Answered by
1
Answer:
cuucchcxhcyxhcydoyxt8xix8td8td8td8ditd9txoyc9yyocoyffocy
LHS = sin4A - cos4A
⇒ LHS = (sin2A)2−(cos2A)2
⇒ LHS = (sin2A+cos2A)(sin2A−cos2A)
⇒ LHS = sin2A −cos2A [∵sin2A+cos2A=1]
⇒ LHS = sin2A −(1−sin2A ) = 2sin2A−1
⇒ LHS = 2(1−cos2A)−1=1−2cos2A = RHS
ffyhxychcydhcyshxysjfyshx5shcuskcudjc6xj0
Similar questions