prove that sin^4+Acos4^A=1-2sin^Acos^2A
Answers
Answered by
6
We have,
=> sin⁴A + cos⁴A = 1 - 2sin²A.cos²A
Solving LHS :-
=> sin⁴A + cos⁴A
=> (sin²A)² + cos⁴A
=> (1 - cos²A)² + cos⁴A
{Since, sin²A = 1 - cos²A}
=> 1 + cos⁴A - 2cos²A + cos⁴A
=> 1 + 2cos⁴A - 2cos²A
=> 1 - 2cos²A(1 - cos²A)
=> 1 - 2cos²A.sin²A
{Since, sin²A = 1 - cos²A}
or, 1 - 2sin²A.cos²A
Q.E.D.
=> sin⁴A + cos⁴A = 1 - 2sin²A.cos²A
Solving LHS :-
=> sin⁴A + cos⁴A
=> (sin²A)² + cos⁴A
=> (1 - cos²A)² + cos⁴A
{Since, sin²A = 1 - cos²A}
=> 1 + cos⁴A - 2cos²A + cos⁴A
=> 1 + 2cos⁴A - 2cos²A
=> 1 - 2cos²A(1 - cos²A)
=> 1 - 2cos²A.sin²A
{Since, sin²A = 1 - cos²A}
or, 1 - 2sin²A.cos²A
Q.E.D.
Similar questions