Math, asked by mhdkashif011, 4 days ago

Prove that sin 40° + sin 20° - cos 10º = 0​

Answers

Answered by IIXxSavageSoulxXII
225

\huge\color{pink}\boxed{\colorbox{Black}{❥Answer}}

consider LHS

\[\sin40^\circ+\sin20^\circ\]

\[=2\sin\left(\frac{40^\circ+20^\circ}{2}

\right)\cos\left(\frac{40^\circ-20^\circ}{2}

\right)\left\{\because\sinA\sinB=2\sin\left(|frac{A+B}{2}\right)\cos\left(\frac{A-B}{2}\right\right\3\]\[=2\sin30^\circ\cos10^\circ\]\}=2\times\frac{1}{2}\cis10^\circ\]\=\cos\left(10^\circ\right)\]

Hence,LHS=RHS

\fcolorbox{red}{pink}{Keep\:Learning}

\fcolorbox{red}{pink}{Be\:Brainly}

Answered by mathdude500
6

\large\underline{\sf{Solution-}}

Consider,

\rm :\longmapsto\:sin40\degree  + sin20\degree  - cos10\degree

\rm \:  =  (\:sin40\degree  + sin20\degree)  - cos10\degree

We know,

\boxed{ \tt{ \: sinx + siny = 2sin\bigg[\dfrac{x + y}{2} \bigg]cos\bigg[\dfrac{x - y}{2} \bigg]}}

Using this, we get

\rm \:  =  \:2sin\bigg[\dfrac{40\degree  + 20\degree }{2} \bigg]cos\bigg[\dfrac{40\degree  - 20\degree }{2} \bigg] - cos10\degree

\rm \:  =  \:2sin\bigg[\dfrac{60\degree   }{2} \bigg]cos\bigg[\dfrac{20\degree}{2} \bigg] - cos10\degree

\rm \:  =  \:2sin\bigg[30\degree  \bigg]cos\bigg[10\degree  \bigg] - cos10\degree

\rm \:  =  \:2 \times \dfrac{1}{2}  \times cos10\degree  - cos10\degree

\rm \:  =  \: cos10\degree  - cos10\degree

\rm \:  =  \:0

Hence,

\rm :\longmapsto\:\boxed{ \tt{ \: sin40\degree  + sin20\degree  - cos10\degree  = 0 \:  \: }}

Additional Information :-

\boxed{ \tt{ \: sinx  -  siny = 2cos\bigg[\dfrac{x + y}{2} \bigg]sin\bigg[\dfrac{x - y}{2} \bigg]}}

\boxed{ \tt{ \: cosx + cosy = 2cos\bigg[\dfrac{x + y}{2} \bigg]cos\bigg[\dfrac{x - y}{2} \bigg]}}

\boxed{ \tt{ \: cosx  -  cosy  \: = -  \:  2sin\bigg[\dfrac{x + y}{2} \bigg]sin\bigg[\dfrac{x - y}{2} \bigg]}}

\boxed{ \tt{ \: 2cosxcosy = cos(x + y) + cos(x - y) \: }}

\boxed{ \tt{ \: 2sinxsiny = cos(x - y) - cos(x + y) \: }}

\boxed{ \tt{ \: 2sinxcosy = sin(x + y) + sin(x - y) \: }}

Similar questions