Prove that sin 40° + sin 20° - cos 10º = 0
Answers
Answered by
225
consider LHS
\[\sin40^\circ+\sin20^\circ\]
\[=2\sin\left(\frac{40^\circ+20^\circ}{2}
\right)\cos\left(\frac{40^\circ-20^\circ}{2}
\right)\left\{\because\sinA\sinB=2\sin\left(|frac{A+B}{2}\right)\cos\left(\frac{A-B}{2}\right\right\3\]\[=2\sin30^\circ\cos10^\circ\]\}=2\times\frac{1}{2}\cis10^\circ\]\=\cos\left(10^\circ\right)\]
Hence,LHS=RHS
Answered by
6
Consider,
We know,
Using this, we get
Hence,
Additional Information :-
Similar questions
English,
2 days ago
Computer Science,
2 days ago
Computer Science,
4 days ago
English,
4 days ago
Economy,
8 months ago
Math,
8 months ago