Math, asked by sailyaRaveen, 1 year ago

prove that sin(-420).cos(390) + cos(-660).sin(330) = -1 help plz ... my RHS is coming +1 ... totally confused .. help plz.. as soon as possible !!

Answers

Answered by MADHANSCTS
169
sin(-420).cos(390) + cos(-660).sin(330) 
-sin(420).cos(390) + cos(660).sin(330)
-sin(360+60).cos(360+30) + cos(2.360 - 60).sin(360-30)
-sin(60). cos(30) - cos(60).sin(30)
-3/4 -1/4
-1
Answered by krishnaanandsynergy
6

Answer:

We can prove this question using trigonometric formula.To prove that given question we should consider left hand side first.Then we can get the right hand side.

Step-by-step explanation:

From the given question,

Take L.H.S(Left Hand Side) ⇒ sin(-420\textdegree).cos(390\textdegree) + cos(-660\textdegree).sin(330\textdegree)

Step 1: First we should know the formula for sin(-\theta) and cos(-\theta).

              sin(-\theta)=-sin\theta

              cos(-\theta)=cos\theta

Step 2: Now apply the above formula in the given question.

                 L.H.S =sin(-420\textdegree).cos(390\textdegree) + cos(-660\textdegree).sin(330\textdegree)

  • sin(-420\textdegree) should be written as, sin(-420 \textdegree)=-sin(420\textdegree)
  • cos(-660\textdegree) should be written as, cos(-660 \textdegree)=cos(660\textdegree)

                  L.H.S =[-sin(420\textdegree)].cos(390\textdegree) + cos(660\textdegree).sin(330\textdegree) --------(1)

Step 3: We know the value of 0\textdegree,30\textdegree,60\textdegree,90\textdegree,180\textdegree,360\textdegree only.So that our given theta value should convert into the 0\textdegree,30\textdegree,60\textdegree,90\textdegree,180\textdegree,360\textdegree.

That is,       420\textdegree=360\textdegree+60\textdegree

                  390\textdegree=360\textdegree+30\textdegree

                  660\textdegree=(2\times360\textdegree)-60\textdegree

                  330\textdegree=360\textdegree-30\textdegree

Step 4: Now apply the above values in equation(1).

 =[-sin(360\textdegree+60\textdegree)].cos(360\textdegree+30\textdegree) + cos[(2\times360\textdegree)-60\textdegree]).sin(360\textdegree-30\textdegree)

Step 5: We should know the formula of following trigonometric formula

      sin(360\textdegree+\theta)=sin\theta

      cos(360\textdegree+\theta)=cos\theta

     cos[(2\times360\textdegree)-\theta)=cos\theta

     sin(360\textdegree-\theta)=-sin\theta

  • Now apply the above in step 2.

  sin(360\textdegree+60\textdegree)=sin60\textdegree

  cos(360\textdegree+30\textdegree)=cos30\textdegree

cos[(2\times360\textdegree)-60\textdegree]=cos60\textdegree

 sin(360\textdegree-30\textdegree)=-sin30\textdegree

  • L.H.S can be written as,

                 L.H.S =(-sin60\textdegree).cos 30\textdegree+cos60\textdegree.(-sin30\textdegree)

Step 6: Apply sin60\textdegree,cos30\textdegree,sin30\textdegree,cos60\textdegree values in step 5 using trigonometric table.

  • sin60\textdegree=\frac{\sqrt{3} }{2}
  • cos30\textdegree=\frac{\sqrt{3} }{2}
  • sin30\textdegree=\frac{1 }{2}
  • cos60\textdegree=\frac{1 }{2}

                 L.H.S =(-\frac{\sqrt{3} }{2} .\frac{\sqrt{3} }{2}) +(\frac{1}{2} .\frac{-1}{2} )

                           =(-\frac{3 }{4} ) +(-\frac{1}{4}  )   ⇒ (\sqrt{3}\times\sqrt{3}=3)

  • Denominator is same in the above equation.So that we can add numerator.

                           =-\frac{4 }{4}

                           =-1

                 L.H.S  = R.H.S hence proved.

Similar questions