Math, asked by jharnadubey333, 6 months ago

Prove that sin 43 cos47 + sin47 cos43=1

Answers

Answered by jp873215
0

Answer:

This is the answer thank you

Attachments:
Answered by Anonymous
0

Step-by-step explanation:

To prove: sin 43 cos47 + sin 47 cos 43 = 1

L.H.S:

sin 43 cos47 + sin 47 cos 43

Multiplying '2' in the numerator and denominator:

= \frac{1}{2} 2(sin 43 cos47 + sin 47 cos 43)

= \frac{1}{2}(2sin 43 cos47 + 2sin 47 cos 43)                   [2sinA cosB =sin(A+B) + sin(A-B)]

=\frac{1}{2}(sin (43+47) + sin (43-47) + sin(47+43) +sin (47-43))  

=\frac{1}{2}(sin(90) + sin(-4) + sin (90) + sin (4))

=\frac{1}{2} (sin90) - sin(4) + sin(90) + sin (4))

=\frac{1}{2} (2)

=1

=R.H.S.

Hence proved

Similar questions