prove that (sin^4A - cos^4A+1)coses^2A=2.
Answers
Answered by
3
Heya User,
--> [ ( cosec⁴ x - cot⁴ x ) + 1 ] / cosec²x
= [ ( cosec² x + cot² x )( cosec² x - cot²x ) + 1 ] / cosec² x
= [ cosec² x + cot²x + 1 ] / cosec² x
= [ 2 cosec² x ] / cosec² x
= 2 √√
=> [ ( cosec⁴ x - cot⁴ x ) + 1 ] / cosec²x = 2 √√
--> [ ( cosec⁴ x - cot⁴ x ) + 1 ] / cosec²x
= [ ( cosec² x + cot² x )( cosec² x - cot²x ) + 1 ] / cosec² x
= [ cosec² x + cot²x + 1 ] / cosec² x
= [ 2 cosec² x ] / cosec² x
= 2 √√
=> [ ( cosec⁴ x - cot⁴ x ) + 1 ] / cosec²x = 2 √√
RIYAprasad1:
thx
Answered by
1
hope this will help you
Attachments:
Similar questions