prove that
sin^4A+cos^4A+sin^2Acos^2A=(1-sinAcosA)(1+sinAcosA)
Answers
Answered by
1
LHS
sin^4A + cos^4A + Sin^2Acos^2A
1 - 2sin^2Acos^2A + Sin^2Acos^2A
1 - Sin^2Acos^2A
(1-sinAcosA)(1+sinAcosA)
So LHS = RHS
Formula used
sin^4A + cos^4A = 1 - 2 sin^2ACos^2A
So
(sin^2A + cos^2A)^2= sin^4A + cos^4A +
2sin^2ACos^2A
1 - 2sin^2ACos^2A = sin^4A + cos^4A
Similar questions