Math, asked by naayra7254, 18 days ago

Prove that:sin^4A×cos^4A÷sinA-cosA=sinA +cosA

Answers

Answered by chandan454380
0

Answer:

See the detailed explanation

Step-by-step explanation:

To prove:  \frac{\sin^4A-\cos^4A}{\sin A-\cos A}=\sin A+\cos A

\text{LHS}=\frac{\sin^4A-\cos^4A}{\sin A-\cos A}=\frac{(\sin^2A)^2-(\cos^2A)^2}{\sin A-\cos A}

       =\frac{(\sin^2A-\cos^2A)(\sin^2A+\cos^2A)}{\sin A-\cos A}\\=\frac{(\sin A-\cos A)(\sin A+\cos A)(1)}{\sin A-\cos A}\\=\sin A+\cos A=\text{RHS}

Hence proved

(Note : There is a typo in the question)

Similar questions