Math, asked by tusharsonale7, 9 months ago

Prove THAT (sin^4o - Cos^4o + 1) cosec²o = 2​

Answers

Answered by SarcasticL0ve
6

To prove:-

  • \sf (sin^4\theta - cos^4\theta + 1)cosec^2\theta = 2

SoluTion:-

\small\sf\;\;\dag\; \underline{Taking\;L.H.S.:-}

\maltese\;\sf \underline{(sin^4\theta - cos^4\theta + 1)cosec^2\theta}\\\\\\:\implies\sf [{(sin^2\theta)^2 - (cos^2\theta)^2} + 1]cosec^2\\\\\\:\implies\sf [{(sin^2\theta + cos^2\theta)(sin^2\theta - cos^2\theta)} + 1]cosec^2\theta\\\\\\:\implies\sf (sin^2\theta - cos^2\theta)cosec^2\theta\qquad\bigg\lgroup\bf \therefore sin^2\theta + cos^2\theta = 1\bigg\rgroup\\\\\\:\implies\sf {sin^2\theta + (1 - cos^2\theta)}cosec^2\theta\\\\\\:\implies\sf (sin^2\theta + sin^2\theta)cosec^2\theta\\\\\\:\implies\sf 2sin^2\theta \times cosec^2\theta\\\\\\:\implies\sf 2 \cancel{sin^2\theta} \times \dfrac{1}{ \cancel{sin^2\theta}}\\\\\\:\implies{\underline{\boxed{\bf{2}}}}\;\bigstar

▬▬▬▬▬▬▬▬▬▬

\boxed{\begin{minipage}{7 cm} Fundamental Trigonometric Identities \\ \\ $ \sin^2\theta  + \cos^2\theta=1 \\ \\ 1+\tan^2\theta = \sec^2\theta \\ \\ 1+\cot^2\theta = \text{cosec}^2 \, \theta$  \end{minipage}}

Similar questions