Math, asked by prateekariga, 10 months ago

prove that (sin^4teta-cos^4teta+1)cosec^2teta=2

Answers

Answered by amansahil213642
1

Answer:

(sin⁴θ-cos⁴θ+1)cosec²θ

=[{(sin²θ)²-(cos²θ)²}+1]cosec²θ

=[{(sin²θ+cos²θ)(sin²θ-cos²θ)}+1]cosec²θ

=(sin²θ-cos²θ+1)cosec²θ [∵, sin²θ+cos²θ=1]

={sin²θ+(1-cos²θ)}cosec²θ

=(sin²θ+sin²θ)cosec²θ

=2sin²θ.cosec²θ

=2sin²θ×1/sin²θ

=2 (Proved)

pls mark me brainliest

Step-by-step explanation:

Answered by BrainlyPopularman
3

{ \bold{ \underline{ TO  \:  \: PROVE } :  - }} \\  \\ { \bold{ ({sin}^{4}(\theta) -  {cos}^{4}{ (\theta) + 1) {cosec}^{2}{ \theta} }  = 2 }} \\  \\

{ \bold{ \underline{ SOLUTION  }  : -  }}  \\ \\  \\ { \bold{ \underline{ L.H.S.} : } - } \\   \\ { \bold{ =  ({sin}^{4}{ \theta}  -  {cos}^{4}{ \theta} + 1)  {cosec}^{2} { \theta} }} \\   \\ { \bold{ =  ({sin}^{4}{ \theta}  -  {cos}^{4}{ \theta} + 1)  \times ( \frac{1}{ {sin}^{2} { \theta}})  }} \\ \\ { \bold{  \:  \:  \:  \: . \:  \: we \:  \: know \:  \: that \:  -  }} \\  \\ { \bold{  \implies \:  {a}^{2} -  {b}^{2}  = (a + b)(a - b)  }} \\  \\ { \bold{ = ( ( {sin}^{2}{ \theta} +  {cos}^{2} { \theta})( {sin}^{2}{ \theta} -  {cos}^{2}  { \theta}) + 1)  \times  \frac{1}{ { \sin }^{2} { \theta}} }} \\  \\ { \bold{ =( {sin}^{2}{ \theta} -  {cos}^{2}  { \theta} + 1) \times  \frac{1}{ { \sin }^{2} { \theta}} }} \\  \\ { \bold{ =  ( {sin}^{2} { \theta} +  {sin}^{2}{ \theta}) \times  \frac{1}{ {sin}^{2}{ \theta} }  }}  \\  \\ { \bold{ =  2 \times  \cancel \frac{{sin}^{2} { \theta}}{ {sin}^{2}{ \theta} }  }} \\  \\ { \bold{ = 2}} \\  \\ { \bold{ =  R.H.S. \:  \:  \:  \: ( Hence \:  \: proved) }}

Similar questions