prove that sin^4x - cos^4x= 1-2cos^2x
Answers
Answered by
41
hope this helps you ☺☺
Attachments:
Answered by
15
Hey user here is your answer....
----> To prove= sin^4x-cos^4x=1-2cos^2x
◆Taking LHS
◆sin^4x-cos^4x
◆(sin^2x-cos^2x) (sin^2x+ cos^2x) 【By identity (a+b)(a-b)=a^2-b^2】
◆(Sin^2x-Cos^2x)×(1)
◆(Because sin^2x+cos^2x=1)
◆(1-cos^2x)-cos^2x
◆1-2cos^2x
#Rohan ( Maths aryabhatta)
Hope it helps you☺️
----> To prove= sin^4x-cos^4x=1-2cos^2x
◆Taking LHS
◆sin^4x-cos^4x
◆(sin^2x-cos^2x) (sin^2x+ cos^2x) 【By identity (a+b)(a-b)=a^2-b^2】
◆(Sin^2x-Cos^2x)×(1)
◆(Because sin^2x+cos^2x=1)
◆(1-cos^2x)-cos^2x
◆1-2cos^2x
#Rohan ( Maths aryabhatta)
Hope it helps you☺️
Similar questions