Math, asked by kirangarcha666, 6 months ago

PROVE THAT:- sin 5 theta=5 sin theta - 20 sin 3 theta + 16 sin 5 theta​

Answers

Answered by tonpesakshi
0

Answer:

hence proved.

Step-by-step explanation:

et theta = x

LHS sin5x

=sin(3x+2x)

=sin3x.cos2x+cos3x.sin2x

=(3sinx-4sin^3x).(1–2sin^2x)+(4cos^3x-3cosx).(2sinx.cosx)

=(3sinx-4sin^3x)(1–2sin^2x)+(4cos^4x-3cos^2x)(2sinx).

=(3sinx-4sin^3x)(1–2sin^2x)+cos^2x.(4cos^2x-3).(2sinx)

=3sinx-4sin^3x-6sin^3x+8sin^5x+(1-sin^2x).(4–4sin^2x-3).(2sinx)

=8sin^5x-10sin^3x+3sinx+(2sinx-2sin^3x)(1–4sin^2x).

=8sin^5x-10sin^3x+3sinx+2sinx-2sin^3x-8sin^3x+8sin^5x

=16sin^5x-20sin^3x+5sinx proved

Answered by rohitsingh1818
0

Step-by-step explanation:

search-icon-header

Search for questions & chapters

search-icon-image

Question

Bookmark

Prove:

sin5θ=16sin

5

θ−20sin

3

θ+5sinθ

Hard

Solution

verified

Verified by Toppr

sin5A=sin(3A+2A)

=sin3Acos2A+cos3Asin2A

=(3sinA−4sin³A)(1–2sin²A)+cos(2A+A)sin2A

=3sinA−10sin³A+8sin

5

A+[cos2AcosA−sin2AsinA]sin2A

=3sinA−10sin³A+8sin

5

A+[(1–2sin²A)cosA−2sin²AcosA]2sinAcosA

=3sinA−10sin³A+8sin

5

A+[cosA−4sin²AcosA]2sinAcosA

=3sinA−10sin³A+8sin

5

A+2sinAcos²A−8sin³Acos²A

=3sinA−10sin³A+8sin

5

A+2sinA(1−sin²A)−8sin³A(1−sin²A)

=3sinA−10sin³A+8sin

5

A+2sinA−2sin³A−8sin³A+8sin

5

A

=5sinA−20sin³A+16sin

5

A[Proved]

Similar questions