prove that sin(50+Theta) - cos(40- theta) = 0
Answers
Answered by
15
LHS,
=>Sin(50+∅) - cos(40-∅)
=>Sin(50+∅)- sin{90-(40-∅)}
=>sin(50+∅) - sin{90-40+∅)
=>Sin(50+∅) - sin(50+∅)
=0
RHS,
=> 0
---------------------
0=0
LHS=RHS
I hope this will help you
-by ABHAY
=>Sin(50+∅) - cos(40-∅)
=>Sin(50+∅)- sin{90-(40-∅)}
=>sin(50+∅) - sin{90-40+∅)
=>Sin(50+∅) - sin(50+∅)
=0
RHS,
=> 0
---------------------
0=0
LHS=RHS
I hope this will help you
-by ABHAY
Sharon15:
thnx
Answered by
9
Here your answer goes
Step :- 1
Given ,
Sin 50° can be written as 90° - 45°
⇒ Sin (90 - 40 + theta ) - Cos ( 40 - theta )
Step :- 2
⇒ sin(90-40+theta) - cos(40-theta)
⇒ sin[90-(40-theta)]- cos(40-theta)
⇒
∴ sin ( 90 - theta ) = Cos theta
⇒ 0
Therefore , Sin ( 50 + theta ) - Cos( 40 - theta ) = 0
↓↓↓
Be Brainly
Together We go far →
Attachments:
Similar questions