Math, asked by Sharon15, 1 year ago

prove that sin(50+Theta) - cos(40- theta) = 0

Answers

Answered by abhi569
15
LHS,



=>Sin(50+∅) - cos(40-∅)

 \cos(theta)  =  \sin(90 - theta)


=>Sin(50+∅)- sin{90-(40-∅)}


=>sin(50+∅) - sin{90-40+∅)

=>Sin(50+∅) - sin(50+∅)

=0

RHS,

=> 0

---------------------

0=0
LHS=RHS



I hope this will help you


-by ABHAY


Sharon15: thnx
abhi569: Welcome
Answered by FuturePoet
9

Here your answer goes

Step :- 1

Given ,

Sin 50° can be written as 90° - 45°

⇒ Sin (90 - 40 + theta ) - Cos ( 40 - theta )

Step :- 2

⇒ sin(90-40+theta) - cos(40-theta)

⇒ sin[90-(40-theta)]- cos(40-theta)

cos(40-theta)-cos(40-theta)

∴  sin ( 90 - theta ) = Cos theta

⇒ 0

Therefore ,  Sin ( 50 + theta ) - Cos( 40 - theta ) = 0

↓↓↓

Be Brainly

Together We go far →


Attachments:
Similar questions