Math, asked by avaninivas2002, 4 months ago


prove that
Sin 50° - sin 70° +cos 80°=0​

Answers

Answered by mathdude500
0

Question :-

  • Prove that : sin 50° - sin 70° + cos 80° = 0.

Answer

Given : -

  • sin 50° - sin 70° + cos 80°

To Prove :-

  • sin 50° - sin 70° + cos 80° = 0

Identity Used :-

\bf \:sinx - siny = 2cos(\dfrac{x + y}{2} )sin(\dfrac{x - y}{2} )

\bf \:sin( - x) =  - sinx

\bf \:cos(90° - x) = sinx

Solution :-

\bf \:Consider \: sin 50° - sin 70° + cos 80°

Using identity sinx - siny, we get

\bf\implies \:2cos(\dfrac{50° + 70°}{2} )sin(\dfrac{50° - 70°}{2} ) + cos80°

\bf\implies \:2cos(\dfrac{120°}{2} )sin(\dfrac{ - 20}{2} ) + cos80°

\bf\implies \:2cos60°sin( - 10°) + cos80°

\bf\implies \: - 2 \times \dfrac{1}{2}  \times sin10° + cos(90° - 10°)

\bf\implies \: - sin10° + sin10°

\bf\implies \:0

\large{\boxed{\boxed{\bf{Hence, Proved}}}}

__________________________________________

Similar questions